Curso de Aprendizaje Profundo para la Visión con Caffe
Caffe es un marco de aprendizaje profundo creado teniendo en cuenta la expresión, la velocidad y la modularidad.
Este curso explora la aplicación de Caffe como un marco de aprendizaje profundo para el reconocimiento de imágenes utilizando MNIST como ejemplo
Audiencia
Este curso es adecuado para investigadores e ingenieros de Deep Learning interesados en utilizar Caffe como marco.
Después de completar este curso, los delegados podrán:
- Entender la estructura de Caffe y los mecanismos de despliegue.
- realizar tareas de instalación / entorno de producción / arquitectura y configuración.
- evaluar la calidad del código, realizar depuración, monitoreo
- Implementar producción avanzada como modelos de entrenamiento, implementación de capas y registro.
Programa del Curso
Instalación
- Estibador
- Ubuntu
- Instalación de RHEL / CentOS / Fedora
- Windows
Caffe Resumen
- Redes, capas y manchas: la anatomía de un modelo de Caffe.
- Adelante/Atrás: los cálculos esenciales de los modelos composicionales en capas.
- Pérdida: la tarea a aprender está definida por la pérdida.
- Solver: el solucionador coordina la optimización del modelo.
- Catálogo de capas: la capa es la unidad fundamental de modelado y cálculo – el catálogo de Caffe incluye capas para modelos de última generación.
- Interfaces: línea de comandos, Python y MATLAB Caffe.
- Datos: cómo cafeinar los datos para la entrada del modelo.
- Convolución con cafeína: cómo Caffe calcula las convoluciones.
Nuevos modelos y nuevo código
- Detección con Fast R-CNN
- Secuencias con LSTMs y Visión + Lenguaje con LRCN
- Predicción de píxeles con FCN
- Diseño del marco y futuro
Ejemplos:
- MNIST
Requerimientos
Ninguno
Los cursos de formación abiertos requieren más de 5 participantes.
Curso de Aprendizaje Profundo para la Visión con Caffe - Booking
Curso de Aprendizaje Profundo para la Visión con Caffe - Enquiry
Aprendizaje Profundo para la Visión con Caffe - Consulta de consultoría
Consulta de consultoría
Testimonios (1)
I genuinely enjoyed the hands-on approach.
Kevin De Cuyper
Curso - Computer Vision with OpenCV
Traducción Automática
Próximos cursos
Cursos Relacionados
Avanzado Stable Diffusion: Aprendizaje profundo para la generación de texto a imagen
21 HorasEsta capacitación en vivo dirigida por un instructor en Argentina (en línea o presencial) está dirigida a científicos de datos de nivel intermedio a avanzado, ingenieros de aprendizaje automático, investigadores de aprendizaje profundo y expertos en visión por computadora que deseen ampliar sus conocimientos y habilidades en aprendizaje profundo para la generación de texto a imagen.
Al final de esta formación, los participantes serán capaces de:
- Comprenda las arquitecturas y técnicas avanzadas de aprendizaje profundo para la generación de texto a imagen.
- Implemente modelos complejos y optimizaciones para la síntesis de imágenes de alta calidad.
- Optimice el rendimiento y la escalabilidad de grandes conjuntos de datos y modelos complejos.
- Ajuste los hiperparámetros para mejorar el rendimiento y la generalización del modelo.
- Integración Stable Diffusion con otros marcos y herramientas de aprendizaje profundo
AlphaFold
7 HorasEsta capacitación en vivo dirigida por un instructor en Argentina (en línea o presencial) está dirigida a biólogos que desean comprender cómo funciona AlphaFold y usar los modelos AlphaFold como guías en sus estudios experimentales.
Al final de esta formación, los participantes serán capaces de:
- Comprender los principios básicos de AlphaFold.
- Más información sobre cómo funciona AlphaFold.
- Aprenda a interpretar AlphaFold las predicciones y los resultados.
Desarrollo de Reconocimiento Facial con IA para las Fuerzas del Orden
21 HorasEsta formación en vivo dirigida por un instructor en Argentina (en línea o presencial) está destinada a personal de aplicación de la ley principiante que desea pasar de los bocetos faciales manuales al uso de herramientas de Inteligencia Artificial para desarrollar sistemas de reconocimiento facial.
Al finalizar esta formación, los participantes podrán:
- Comprender los fundamentos de la Inteligencia Artificial y el Aprendizaje Automático.
- Adquirir conocimientos básicos sobre el procesamiento digital de imágenes y su aplicación en el reconocimiento facial.
- Desarrollar habilidades para usar herramientas e frameworks de IA para crear modelos de reconocimiento facial.
- Obtener experiencia práctica en la creación, entrenamiento y prueba de sistemas de reconocimiento facial.
- Comprender las consideraciones éticas y las mejores prácticas en el uso de tecnología de reconocimiento facial.
Fiji: Introducción al Procesamiento de Imágenes Científicas
21 HorasFiji es un paquete de procesamiento de imágenes de código abierto que agrupa ImageJ (un programa de procesamiento de imágenes para imágenes multidimensionales científicas) y una serie de complementos para el análisis de imágenes científicas.
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán cómo usar la distribución Fiji y su programa ImageJ subyacente para crear una aplicación de análisis de imágenes.
Al final de esta formación, los participantes serán capaces de:
- Utilice las funciones de programación avanzadas y los componentes de software de Fiji para ampliar ImageJ
- Unir imágenes 3D de gran tamaño a partir de mosaicos superpuestos
- Actualización automática de una instalación de Fiji al iniciarse mediante el sistema de actualización integrado
- Seleccione entre una amplia selección de lenguajes de scripting para crear soluciones de análisis de imágenes personalizadas
- Utilice las potentes bibliotecas de Fiji, como ImgLib, en grandes conjuntos de datos de bioimágenes
- Implemente su aplicación y colabore con otros científicos en proyectos similares
Formato del curso
- Charla y discusión interactiva.
- Muchos ejercicios y práctica.
- Implementación práctica en un entorno de laboratorio en vivo.
Opciones de personalización del curso
- Para solicitar una formación personalizada para este curso, póngase en contacto con nosotros para concertarlo.
Fiji: Procesamiento de imágenes para tecnología y toxicología de Bio
14 HorasEste entrenamiento en vivo, impartido por un instructor (en línea o presencial) está dirigido a investigadores y profesionales de laboratorio principiantes e intermedios que desean procesar y analizar imágenes relacionadas con tejidos histológicos, células sanguíneas, algas y otros muestras biológicas.
Al finalizar este entrenamiento, los participantes podrán:
- Navegar en la interfaz de Fiji e utilizar las funciones principales de ImageJ.
- Preprocesar y mejorar imágenes científicas para un mejor análisis.
- Analizar imágenes cuantitativamente, incluyendo conteo celular y medición de áreas.
- Automatizar tareas repetitivas utilizando macros y complementos.
- Personalizar flujos de trabajo para necesidades específicas de análisis de imágenes en la investigación biológica.
Visión por Computadora con OpenCV
28 HorasOpenCV (Open Source Computer Vision Library: http://opencv.org) es una biblioteca de licencia BSD de código abierto que incluye varios centenares de algoritmos de visión por ordenador.
Audiencia
Este curso está dirigido a ingenieros y arquitectos que buscan utilizar OpenCV para proyectos de visión por computadora
Python y Aprendizaje Profundo con OpenCV 4
14 HorasEsta capacitación en vivo dirigida por un instructor en Argentina (en línea o presencial) está dirigida a ingenieros de software que desean programar en Python con OpenCV 4 para el aprendizaje profundo.
Al final de esta formación, los participantes serán capaces de:
- Vea, cargue y clasifique imágenes y vídeos con OpenCV 4.
- Implemente el aprendizaje profundo en OpenCV, 4 con TensorFlow y Keras.
- Ejecute modelos de aprendizaje profundo y genere informes impactantes a partir de imágenes y vídeos.
OpenFace: Creación de Sistemas de Reconocimiento Facial
14 HorasOpenFace es Python y Torch un software de reconocimiento facial en tiempo real de código abierto basado en la investigación de FaceNet de Google.
En esta capacitación en vivo dirigida por un instructor, los participantes aprenderán a usar los componentes de OpenFace para crear e implementar una aplicación de reconocimiento facial de muestra.
Al final de esta formación, los participantes serán capaces de:
- Trabaje con los componentes de OpenFace, incluidos dlib, OpenVC Torch y nn4 para implementar la detección, alineación y transformación de rostros
- Aplique OpenFace a aplicaciones del mundo real como vigilancia, verificación de identidad, realidad virtual, juegos e identificación de clientes habituales, etcétera.
Audiencia
- Desarrolladores
- Científicos de datos
Formato del curso
- En parte conferencia, en parte discusión, ejercicios y práctica práctica pesada
Búsqueda de Patrones
14 HorasPattern Matching es una técnica utilizada para localizar patrones específicos dentro de una imagen. Se puede utilizar para determinar la existencia de características especificadas dentro de una imagen capturada, por ejemplo, la etiqueta esperada en un producto defectuoso en una línea de fábrica o las dimensiones especificadas de un componente. Es diferente de "Pattern Recognition" (que reconoce patrones generales basados en colecciones más grandes de muestras relacionadas) en que dicta específicamente lo que estamos buscando, y luego nos dice si el patrón esperado existe o no.
Formato del curso
- Este curso presenta los enfoques, tecnologías y algoritmos utilizados en el campo de la coincidencia de patrones en su aplicación a Machine Vision.
Raspberry Pi + OpenCV: Construye un Sistema de Reconocimiento Facial
21 HorasEsta capacitación en vivo dirigida por un instructor presenta el software, el hardware y el proceso paso a paso necesarios para crear un sistema de reconocimiento facial desde cero. El reconocimiento facial también se conoce como Face Recognition.
El hardware utilizado en este laboratorio incluye Rasberry Pi, un módulo de cámara, servos (opcionales), etcétera. Los participantes son responsables de comprar estos componentes ellos mismos. El software utilizado incluye OpenCV, Linux, Python, etcétera.
Al final de esta formación, los participantes serán capaces de:
- Instale Linux, OpenCV y otras utilidades y bibliotecas de software en una Rasberry Pi.
- Configure OpenCV para capturar y detectar imágenes faciales.
- Comprenda las diversas opciones para empaquetar un sistema Rasberry Pi para su uso en entornos del mundo real.
- Adapte el sistema para una variedad de casos de uso, incluida la vigilancia, la verificación de identidad, etcétera.
Formato del curso
- En parte conferencia, en parte discusión, ejercicios y práctica práctica pesada
Nota
- Otras opciones de hardware y software incluyen: Arduino, OpenFace, Windows, etcétera. Si desea utilizar alguno de ellos, póngase en contacto con nosotros para concertarlo.
Introducción a Stable Diffusion para la generación de texto a imagen
21 HorasEsta capacitación en vivo dirigida por un instructor (en línea o presencial) está dirigida a científicos de datos, ingenieros de aprendizaje automático e investigadores de visión por computadora que deseen aprovechar Stable Diffusion para generar imágenes de alta calidad para una variedad de casos de uso.
Al final de esta formación, los participantes serán capaces de:
- Comprender los principios de Stable Diffusion y cómo funciona para la generación de imágenes.
- Construya y entrene Stable Diffusion modelos para tareas de generación de imágenes.
- Aplique Stable Diffusion a varios escenarios de generación de imágenes, como la pintura interior, la pintura externa y la traducción de imagen a imagen.
- Optimice el rendimiento y la estabilidad de los modelos Stable Diffusion.
TensorFlow Lite para Microcontroladores
21 HorasEsta capacitación en vivo dirigida por un instructor en Argentina (en línea o presencial) está dirigida a ingenieros que desean escribir, cargar y ejecutar modelos de aprendizaje automático en dispositivos integrados muy pequeños.
Al final de esta formación, los participantes serán capaces de:
- Instale TensorFlow Lite.
- Cargue modelos de aprendizaje automático en un dispositivo integrado para permitirle detectar voz, clasificar imágenes, etc.
- Agregue IA a los dispositivos de hardware sin depender de la conectividad de red.
Vision Builder para Inspección Automatizada
35 HorasEsta formación en vivo dirigida por un instructor en Argentina (en línea o presencial) está destinada a profesionales de nivel intermedio que desean utilizar Vision Builder AI para diseñar, implementar y optimizar sistemas de inspección automatizados para procesos SMT (Surface-Mount Technology).
Al final de esta formación, los participantes podrán:
- Configurar e instalar inspecciones automatizadas utilizando Vision Builder AI.
- Adquirir y preprocesar imágenes de alta calidad para su análisis.
- Implementar decisiones basadas en lógica para la detección de defectos y validación del proceso.
- Generar informes de inspección y optimizar el rendimiento del sistema.